Empirical analysis 0000000 000000 0

Image: A mathematical states and a mathem

Selection and Incentive Effects in Health Insurance

Pierre-Yves Geoffard

Paris School of Economics

October 23, 2009

Pierre-Yves Geoffard Selection and Incentive Effects in Health Insurance Paris School of Economics

Empirical analysis 0000000 000000 0

Set up

Risk sharing and incentives

- Health insurance reform:
 - putting patients (more) at risk
 - decreasing level of coverage : lower demand for health care (incentive effect)

trade-off between risk sharing and incentives.

- coverage $\downarrow \Rightarrow$ expected cost (risk) \downarrow (moral hazard)
- coverage $\downarrow \Rightarrow$ demand for *insurance* \downarrow
- expected cost (risk) $\downarrow \Rightarrow$ premium \downarrow
- premium $\downarrow \Rightarrow$ demand for *insurance* \uparrow

Image: A match a ma

Image: A mathematical states and a mathem

Set up

- Terms of the trade-off :
 - coverage elasticity of risk ("moral hazard")
 - price (premium) elasticity of demand for insurance
 - coverage elasticity of demand

Pierre-Yves Geoffard Selection and Incentive Effects in Health Insurance

Empirical analysis 0000000 000000 0

< □ > < ---->

Set up

Asymmetries of information in health insurance

- Moral hazard: endogenous risk
 - expected cost depends on unobserved action (prevention effort)
- ▶ In health care insurance, "ex post" moral hazard:
 - demand for health care price elastic
 - health insurance : cost reimbursement
 - induces an ex post price distorsion

Paris School of Economics

Selection and Incentive Effects in Health Insurance

Pierre-Yves Geoffard

Set up

Asymmetries of information in health insurance: a simple theory

Timing:

Pierre-Yves Geoffard

- Health state h is drawn from a distribution, observed by the agent (but not by us).
- Risk (some endogenous variable) x is realised (e.g., health care consumption).

We observe x and D (but not h).

Image: A math a math

Empirical analysis 0000000 000000 0

< □ > < ---->

Paris School of Economics

Set up

First glance at the data

CSS (a major health insurance fund) in the *Canton de Vaud* 89 141 individuals (62 415 adults) administrative claims for years 1997 to 2007.

Deductible	230	400	600	1 200	1 500
Average expenditure	3 474	2 648	1 872	1 327	614

Positive correlation between coverage and expenditures. (Q: causality?)

Pierre-Yves Geoffard

Incentives and Selection

Empirical analysis 0000000 000000

(二)、

Paris School of Economics

Selection and incentive effects

Notation: (x|y) the distribution of x conditional on y, $\mu_x(.|y)$ its c.d.f. A random variable x is a **signal of bad health** if: it is observable; it is negatively related to h, conditionally on D. Formally : for any D, for any h' > h, $(x|D, h) \succeq (x|D, h')$. There is an **incentive effect** on x if :

$$\forall h, D' > D \Rightarrow (x|D, h) \succeq (x|D', h).$$

There is a **selection effect** if a higher deductible (lower coverage) reveals a better distribution of health state (a larger θ):

$$D' > D \Rightarrow (h|D') \succeq (h|D).$$

Pierre-Yves Geoffard

	Efficiency	Empirical analysis	
	00000	0000000 000000 0	
Incentives and Selection			

Lemma: separating incentive and selection effects

Let D' > D be two contracts, x a signal of bad health (real-valued random variable which decreases with h) We have:

$$E[x|D] - E[x|D'] = \underbrace{\int_{\tilde{h}} \left(E[x|D, \tilde{h}] - E[x|D', \tilde{h}] \right) d\mu_{h}(\tilde{h}|D')}_{A(D,D')} + \underbrace{\int_{\tilde{h}} \frac{\partial E}{\partial h} [x|D, \tilde{h}] \left(\mu_{h}(\tilde{h}|D') - \mu_{h}(\tilde{h}|D) \right) d\tilde{h}}_{B(D,D')}$$

- $A(D, D') \ge 0$ if there is an incentive effect on x.
- ► B(D, D') ≥ 0 if there is a selection effect: D' > D reveals a better health, which induces less spendings.
- ▶ Either effect induces a negative correlation between *D* and *X*.

Need more structure Pierre-Yves Geoffard Selection and Incentive Effects in Health Insurance

Image: A math a math

Paris School of Economics

Fist and Second Best efficiency

A model

- Health care good x, unit price p.
- ▶ Consumption (composite) good *c*, numeraire (price =1)
- exogenous income W.
- State-depedent preferences u(c, x; h).
 - Ex1: u(x, c, h) = U(c) + H(x + h) (separable in c and h...)
 - Ex2 (Cobb-Douglas): $u(x, c, h) = b(h) + \alpha(h) \ln(c) + (1 - \alpha(h)) \ln(x)$
 - ▶ What matters is that *MRS*_{xc} decreases with *h*...

Pierre-Yves Geoffard

Ex ante efficiency

$$\max_{\substack{x(.), c(.) \text{ s. t.}}} E[u(x(h), c(h); h)].$$
$$E[px(h) + c(h)] \le W$$

No ex post distorsion: X(h, W) first best level.

$$\forall h, \frac{u_x}{u_c}(X(h), c(h); h) = p.$$

Full insurance: for all (h, h'):

$$u_c(X(h), c(h); h) = u_c(X(h'), c(h'); h').$$

Paris School of Economics

Note : if u_{ch} = 0, then First best health insurance = no insurance!

Pierre-Yves Geoffard

Implementation?

First best efficient allocation would be implementable with health-dependant income transfer (self-financed, E[T(h)] = 0):

$$T(h) = pX(h) + c(h) - W.$$

Ex post decision:

$$\max_{\substack{x, c \text{ s. t.}}} u(x, c; h).$$
$$px + c \le W + T(h).$$

$$T(h) = L(h) - E[L(h)],$$

E[L(h)]: insurance premium, prepaid. $L(h) = \underbrace{pX(h)}_{\text{health care consumption insurance}} + \underbrace{c(h) - E[c(h)]}_{\text{consumption insurance}}.$

Pierre-Yves Geoffard

Paris School of Economics

	Efficiency	Empirical analysis	
	00000	0000000 000000 0	
Fist and Second Best efficiency	v		

Second best insurance

BUT no such scheme (*h* unobservable). Imperfect insurance t(x), with copayment rate $t'(x) \ge 0$, instead of T(h). Example: deductible *D*, $l(x) = \max\{px - D; 0\}$; fair premium P = E[l(x(h))]. Ex post:

$$\max_{\substack{x, c \text{ s. t.}}} u(x, c; h).$$
$$px + c \le W + l(x) - E[l(x)].$$

Budget constraint : $C(x) + c \le W$, with C(x): out-of-pocket expenditure (+ premium): C(x) = px - l(x) + E[l(x)]. Marginal price of health care: C'(x) = p if px < D, C'(x) = 0 if px > D; more generally, $C'(x) \ne p$ for some x: "moral hazard".

Pierre-Yves Geoffard

Fist and Second Best efficiency

Empirical analysis 0000000 000000

Second best insurance contract

Three distorsions:

- Price p(1 t') is too small (ex post): incentive effect.
- No coverage of consumption risk c(h) E[c(h)].
- Income transfer t(x(h)) may be too small or too large

If D increases, copayment t' increases: less distorsions, but less risk sharing.

Second best) optimal contract:

- depends on risk aversion and price elasticity of demand for health care
- trade off between risk sharing and incentives
- Blomqvist (1997): nonlinear contract, copayment decreases with expenditure

Empirical analysis •0000000 000000

Data

Empirical issue: effect of copayment on health care expenditures?

Health care: usual empirical finding:

Positive correlation between coverage and expenditures.

Causality?

Separating adverse selection and "moral hazard":

- Difficult empirical issue (esp. on cross sectional data)
- Policy issue

Econometric study of Swiss health insurance claims data. (joint work with Lucien Gardiol and Chantal Grandchamp, University of Lausanne).

Image: A math a math

Pierre-Yves Geoffard

Empirical analysis

Image: A matrix

Data

Health insurance in Switzerland: regulated competition

- Each insurance firm offers the same menu of contracts
- Insurance is mandatory, selection is prohibited.
- Premiums are independent of age, sex, health condition
- Risk adjustment scheme
- Insurance firms compete in premiums
- Premium subsidy for the poor
- ► + a bit of Managed Care.

Empirical analysis

Data

The Swiss system: an economist's dream?

Each contract:

- a deductible D
- a copayment rate $\tau = 10\%$
- a cap on annual expenditure D + 600 Sfr.

(600 Sfr = 400 EUR) (mean household income, 2001 : 105 000 Sfr) Each individual faces the same menu of contracts:

- $D \in \{230, 400, 600, 1200, 1500\}.$
- \rightarrow information on opportunity cost.

Image: A math a math

Image: A matrix

Data

The data

CSS (a major health insurance fund) in the *Canton de Vaud* 89 141 individuals (62 415 adults) administrative claims for years 1997 to 2000; age, sex, annual inpatient and outpatient expenditure; invalidity rent, premium subsidy, supplementary insurance (with CSS). Annual expenditure (reference category: D = 1500, $x \simeq 1200$)

Deductible	230	400	600	1'200
Difference	2'860	2'034	1'258	713

Positive correlation between coverage and expenditures. But: endogenous choice of coverage D!

Asymmetries of information: the "complete" story Timing:

- ▶ The menu of contracts is given (no "adverse" selection).
- Agent observes θ (some information about health risk)
- ► Agent chooses coverage *D* (smaller *D*= better coverage)
- ► Health state $h = \theta + \varepsilon$ is drawn, observed by the agent (but not by us).
- ▶ Risk (some endogenous variable) *x* is realised.

Random variable x: represents some (possibly endogenous) component of the risk. Examples: measures of health care consumption (number of visits or inpatient stays, annual expenditure,...); death.

We observe x and D (but not θ or h).

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

Death and the deductible: First strong evidence of selection

Presumably, no incentive effect (esp., no *positive* effect of coverage on mortality).

Raw figures (keep only individuals ages 20 to 64, who did not exit the sample except by death).

D	n	number of deaths				death rate	
		1997	1998	1999	2000	Total	
230	12'362	75	56	58	68	257	2.0790
400	4'195	12	8	11	11	42	1.0012
\geq 600	8'757	12	21	16	12	61	0.6966
Total	25'314	99	85	95	91	360	1.4221

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ○ Q
 Paris School of Economics

Selection and Incentive Effects in Health Insurance

Pierre-Yves Geoffard

Empirical analysis

Death and the deductible: controls

Simple logit analysis: X = 1/0 indicates if the individual has died or not in the four year period.

Variables (X)	Coefficients	Odds Ratio	Z
Constant	-7.1000		-6.92
Gender (ref=female)	0.8376	2.3108	7.66
Age	0.0075	1.0076	0.17
Age squared	0.0007	1.0007	1.53
Deductible 230	0.6657	1.9459	3.95
Deductible > 600	-0.3671	0.6927	-1.81

Image: A math a math

Pierre-Yves Geoffard

Efficiency 00 00000 Empirical analysis

< □ > < ---->

Further analysis: sample selection

Keep only adult men (aged over 25), who stayed with CSS over four years, did not change deductible, are not eligible to disability pension benefits, did not receive a premium subsidy.

Variables (n=31'540)		Mean	Std-dev.
Age in 1997		52.68	14.92
Outpatient expenditures		1'854.17	3'288.77
Frequency of inpatient costs > 0		0.09	-
Inpatient expenditures (if > 0)	n=2'848	6'706.22	8'537.38
Total health care costs		2'478.86	5'240.32
Rural area		0.30	-
Deductible	230	0.40	-
	400	0.16	-
	600	0.26	-
	1'200	0.10	-
	1'500	0.08	-
Supplementary insurance	alternative	0.58	-
	semi-private	0.15	-
	private	0.14	_

Final data set: 7 885 individuals, four years.

Paris School of Economics

Selection and Incentive Effects in Health Insurance

Pierre-Yves Geoffard

Structural model

Empirical analysis

Image: A math a math

Paris School of Economics

Structural model: individual choice.

First stage: health indicator θ observed; deductible D chosen. Second stage: health state h is realised; health care consumption x and a composite good c are chosen.

For the individual, monetary costs associated with health care (given D):

$$M(x) = \min\{px; D + \tau(px - D); D + \tau K\}.$$

Total out of pocket costs include non monetary costs:

$$C(x;D)=M(x)+ax.$$

Pierre-Yves Geoffard

Empirical analysis

Structural model

Second stage (incentive effect)

$$v(h, W; D) \equiv \max_{c, x \mid c+C(x; D) \leq W} (u(x, c, h))$$

Gives the (ex post) utility level v, and the health care consumption function x(h, W; D). Incentive effect: x decreases with D. Limit case: $D = +\infty$ (no insurance), X(h, W) (ex post efficient).

メロト メロト メヨト メ

Empirical analysis

Results

Structural model

First stage (selection effect)

$$\max_{D,W|W+P(D)\leq W_0} E[v(\tilde{h},W;D)|\theta].$$

Selection effect: D increases with θ , hence (h|D) increases with D.

Pierre-Yves Geoffard Selection and Incentive Effects in Health Insurance Paris School of Economics

* ロ ト * 伊 ト * 注 ト

Empirical analysis

Structural model

Demand for health care : incentives

Under Cobb-Douglas utility. Second stage (incentive effect) There exist critical values $h^1(D)$ and $h^2(D)$, and two constants $\lambda_0 > \lambda_{\tau} > 1$ such that:

- bad health: h < h¹(D), expenditures exceed the cap: x(h, D) = X(h)λ₀;
- ► average health: $h \in [h^1(D), h^2(D)]$, expenditures exceed deductible: $x(h, D) = X(h)\lambda_{\tau}$
- good health: $h > h^2(D)$, expenditures below deductible: x(h, D) = X(h).

・ロト ・ 日下・ ・ 日下・

Structural model

Efficiency 00 00000 Empirical analysis

Results

First stage: selection effect.

Increasing θ (better expected health): larger *D* is preferred (bunching).

We assume that, conditional on D, (X(h)|D) follows a (two-step) lognormal distribution (p_D, μ_D, σ_D) . If p_D, μ_D differ across D, this reveals a selection effect.

Image: A match a ma

Introduction 00000 Efficiency 00 00000 Empirical analysis

Results

Structural model

Demand for health care

Pierre-Yves Geoffard

Paris School of Economics

Identification assumption : multiplicative incentive effect $x(h, \tau) = X(h)\lambda_{\tau}$.

 λ represents the incentive effect: $\lambda_0 > \lambda_{\tau} > 1$ is a multiplicative factor when copayment rate changes. Empirical strategy:

$$\begin{array}{cccc} & \text{proba } p \\ x = 0 & \Rightarrow & X = 0 \\ & \text{proba}(1 - p) \end{array}$$

$$\begin{array}{cccc} 0 < x \leq D & \Rightarrow & x = X \\ D \leq x \leq D + K & \Rightarrow & x = D + (X - D)\lambda_{\tau} \\ & D + K \leq x & \Rightarrow & x = D + K\lambda_{\tau} + (X - D - K)\lambda_{0} \end{array}$$

Image: A math a math

Paris School of Economics

Pierre-Yves Geoffard

Variable	Benchm	Incentive	Selection	Both	z-value
λ_{τ}		1.6565		1.8783	31.87
λ_0		2.0947		2.4963	19.03
Mean (μ_D)					
constant	5.3923	5.4547	5.5576	5.4635	179.91
D400			-0.0661	0.0195	1.06
D600			-0.1709	0.0356	1.84
D1200			-0.2584	0.1567	4.30
D1500			-0.6914	-0.0522	-0.80
age	0.3437	0.2807	0.3301	0.2652	46.97
Variance (σ_D^2)					
constant	1.5261	1.2329	1.5960	1.2674	45.99
D400			-0.1006	-0.1323	-9.72
D600			-0.1146	-0.1894	-14.43
D1200			-0.0338	-0.1774	-6.76
D1500			0.1106	-0.0930	-1.90
age	-0.0556	-0.0350	-0.0597	-0.0359	-9.89
р					
constant	0.3742	0.3742	0.5694	0.5694	73.42
D400			0.0094	0.0094	1.78
D600			-0.0889	-0.0889	-14.19
D1200			-0.2996	-0.2996	-30.82
D1500			-0.4037	-0.4037	-39.90
age	0.0645	0.0645	0.0443	0.0443	55.22

Pierre-Yves Geoffard

Paris School of Economics

2

Simulation: with estimated values of λ , compare with D = 1500

Deductible	230	400	600	1'200
Incentive effect	697	521	306	62
Selection effect	2'163	1'513	953	651
Observed difference	2'860	2'034	1'258	713

Differences in spendings: 1/4 incentive effect, 3/4 selection effect. Should deductibles be increased?

- depends on risk aversion...

Image: A mathematical states and a mathem